8.2. math
— Mathematical functions¶
This module is always available. It provides access to the mathematical functions defined by the C standard.
These functions cannot be used with complex numbers; use the functions of the
same name from the cmath
module if you require support for complex
numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.
The following functions are provided by this module. Except when explicitly noted otherwise, all return values are floats.
8.2.1. Number-theoretic and representation functions¶
-
math.
ceil
(x)¶ Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to
x.__ceil__()
, which should return anIntegral
value.
-
math.
copysign
(x, y)¶ Return x with the sign of y. On a platform that supports signed zeros,
copysign(1.0, -0.0)
returns -1.0.
-
math.
fabs
(x)¶ Return the absolute value of x.
-
math.
factorial
(x)¶ Return x factorial. Raises
ValueError
if x is not integral or is negative.
-
math.
floor
(x)¶ Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to
x.__floor__()
, which should return anIntegral
value.
-
math.
fmod
(x, y)¶ Return
fmod(x, y)
, as defined by the platform C library. Note that the Python expressionx % y
may not return the same result. The intent of the C standard is thatfmod(x, y)
be exactly (mathematically; to infinite precision) equal tox - n*y
for some integer n such that the result has the same sign as x and magnitude less thanabs(y)
. Python’sx % y
returns a result with the sign of y instead, and may not be exactly computable for float arguments. For example,fmod(-1e-100, 1e100)
is-1e-100
, but the result of Python’s-1e-100 % 1e100
is1e100-1e-100
, which cannot be represented exactly as a float, and rounds to the surprising1e100
. For this reason, functionfmod()
is generally preferred when working with floats, while Python’sx % y
is preferred when working with integers.
-
math.
frexp
(x)¶ Return the mantissa and exponent of x as the pair
(m, e)
. m is a float and e is an integer such thatx == m * 2**e
exactly. If x is zero, returns(0.0, 0)
, otherwise0.5 <= abs(m) < 1
. This is used to “pick apart” the internal representation of a float in a portable way.
-
math.
fsum
(iterable)¶ Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums:
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 0.9999999999999999 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 1.0
The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.
For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating point summation.
-
math.
isfinite
(x)¶ Return
True
if x is neither an infinity nor a NaN, andFalse
otherwise. (Note that0.0
is considered finite.)New in version 3.2:
New in version 3.2.
-
math.
isinf
(x)¶ Return
True
if x is a positive or negative infinity, andFalse
otherwise.
-
math.
isnan
(x)¶ Return
True
if x is a NaN (not a number), andFalse
otherwise.
-
math.
modf
(x)¶ Return the fractional and integer parts of x. Both results carry the sign of x and are floats.
-
math.
trunc
(x)¶ Return the
Real
value x truncated to anIntegral
(usually an integer). Delegates tox.__trunc__()
.
Note that frexp()
and modf()
have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an ‘output
parameter’ (there is no such thing in Python).
For the ceil()
, floor()
, and modf()
functions, note that all
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs(x) >= 2**52
necessarily has no fractional bits.
8.2.2. Power and logarithmic functions¶
-
math.
exp
(x)¶ Return
e**x
.
-
math.
expm1
(x)¶ Return
e**x - 1
. For small floats x, the subtraction inexp(x) - 1
can result in a significant loss of precision; theexpm1()
function provides a way to compute this quantity to full precision:>>> from math import exp, expm1 >>> exp(1e-5) - 1 # gives result accurate to 11 places 1.0000050000069649e-05 >>> expm1(1e-5) # result accurate to full precision 1.0000050000166668e-05
New in version 3.2:
New in version 3.2.
-
math.
log
(x[, base])¶ With one argument, return the natural logarithm of x (to base e).
With two arguments, return the logarithm of x to the given base, calculated as
log(x)/log(base)
.
-
math.
log1p
(x)¶ Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near zero.
-
math.
log10
(x)¶ Return the base-10 logarithm of x. This is usually more accurate than
log(x, 10)
.
-
math.
pow
(x, y)¶ Return
x
raised to the powery
. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In particular,pow(1.0, x)
andpow(x, 0.0)
always return1.0
, even whenx
is a zero or a NaN. If bothx
andy
are finite,x
is negative, andy
is not an integer thenpow(x, y)
is undefined, and raisesValueError
.
-
math.
sqrt
(x)¶ Return the square root of x.
8.2.3. Trigonometric functions¶
-
math.
acos
(x)¶ Return the arc cosine of x, in radians.
-
math.
asin
(x)¶ Return the arc sine of x, in radians.
-
math.
atan
(x)¶ Return the arc tangent of x, in radians.
-
math.
atan2
(y, x)¶ Return
atan(y / x)
, in radians. The result is between-pi
andpi
. The vector in the plane from the origin to point(x, y)
makes this angle with the positive X axis. The point ofatan2()
is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example,atan(1)
andatan2(1, 1)
are bothpi/4
, butatan2(-1, -1)
is-3*pi/4
.
-
math.
cos
(x)¶ Return the cosine of x radians.
-
math.
hypot
(x, y)¶ Return the Euclidean norm,
sqrt(x*x + y*y)
. This is the length of the vector from the origin to point(x, y)
.
-
math.
sin
(x)¶ Return the sine of x radians.
-
math.
tan
(x)¶ Return the tangent of x radians.
8.2.4. Angular conversion¶
-
math.
degrees
(x)¶ Converts angle x from radians to degrees.
-
math.
radians
(x)¶ Converts angle x from degrees to radians.
8.2.5. Hyperbolic functions¶
Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.
-
math.
acosh
(x)¶ Return the inverse hyperbolic cosine of x.
-
math.
asinh
(x)¶ Return the inverse hyperbolic sine of x.
-
math.
atanh
(x)¶ Return the inverse hyperbolic tangent of x.
-
math.
cosh
(x)¶ Return the hyperbolic cosine of x.
-
math.
sinh
(x)¶ Return the hyperbolic sine of x.
-
math.
tanh
(x)¶ Return the hyperbolic tangent of x.
8.2.6. Special functions¶
-
math.
erf
(x)¶ Return the error function at x.
The
erf()
function can be used to compute traditional statistical functions such as the cumulative standard normal distribution:def phi(x): 'Cumulative distribution function for the standard normal distribution' return (1.0 + erf(x / sqrt(2.0))) / 2.0
New in version 3.2:
New in version 3.2.
-
math.
erfc
(x)¶ Return the complementary error function at x. The complementary error function is defined as
1.0 - erf(x)
. It is used for large values of x where a subtraction from one would cause a loss of significance.New in version 3.2:
New in version 3.2.
-
math.
gamma
(x)¶ Return the Gamma function at x.
New in version 3.2:
New in version 3.2.
-
math.
lgamma
(x)¶ Return the natural logarithm of the absolute value of the Gamma function at x.
New in version 3.2:
New in version 3.2.